NeurocomputingNeurocomputing welcomes theoretical contributions aimed at winning further understanding of neural networks and learning systems, including, but not restricted to, architectures, learning methods, analysis of network dynamics, theories of learning, self-organization, biological neural network modelling, sensorimotor transformations and interdisciplinary topics with artificial intelligence, artificial life, cognitive science, computational learning theory, fuzzy logic, genetic algorithms, information theory, machine learning, neurobiology and pattern recognition.